
End-to-End Payment Flow (Connect Research)

1. Client Payment Flow (Frontend + Backend)

Step 1: Project Setup

• Client posts a project.

• Estimated project fee is determined (consultant fee + platform fee + tax).

Step 2: Checkout Page

• Built with Stripe Elements (embedded form).

• User sees:

◦ Consultant fee (goes to consultant).

◦ Platform fee (goes to Connect Research).

◦ Taxes (calculated via Stripe Tax based on client’s location).

◦ Promo code input (applies discount only to platform fee).

• Total amount = (Consultant fee + Platform fee - Promo
discount) + Taxes

Step 3: Payment Confirmation

• Payment goes to Connect Research Stripe account (platform).

• Funds are held in escrow (via Stripe Connect Custom/Express account).

• Stripe webhook listens for payment_intent.succeeded or
payment_intent.payment_failed.

2. Escrow Logic

After Payment:

• Funds are not immediately transferred to the consultant.

• Stored as available balance in platform account, or in separate balance per Stripe
Connect architecture.

Work Submitted by Consultant

• Consultant clicks “Submit Work.”

• Timestamp is recorded.

• System notifies the client and sets a 5-day timer.

Client Options

• Client can:

◦ Click “Mark as Delivered” → Funds released to consultant.

◦ Click “Raise Dispute” → Funds held.

• “Mark as Delivered” should Trigger fund release via Stripe Transfer or PaymentIntent to
consultant’s connected account.

• Notify both parties.

Client Does Not Confirm in X Days (e.g., 5):

• Auto-release funds to consultant via backend logic.

If Dispute Is Raised Before Release:

• Funds are held.

• No release until admin resolves.

• Resolution:

◦ Partial or full refund to client.

◦ Release to consultant.

◦ Split.

3. Dispute Workflow

Trigger:

• Client clicks “Dispute” before delivery confirmation.

• System flags transaction as "Under Dispute".

Actions:

• Notifications sent to:

◦ Client (acknowledgment)

◦ Consultant (alert)

◦ Admin (with project details)

Admin Interface:

• Review evidence.

• Choose to:

◦ Refund client.

◦ Release full/partial funds to consultant.

Stripe Webhooks Monitored:

• charge.dispute.created

• charge.dispute.closed

4. Payout Flow (Consultant)

• Once funds are cleared (via delivery confirmation or dispute resolution), initiate:

◦ Stripe Transfer to the consultant’s connected account.

• Stripe webhook: transfer.paid (for confirmation)

5. Promo Code Management

• Applies to platform fee only.

• Built into frontend and backend logic.

• Admin can:

◦ Create/edit/delete codes via admin dashboard.

◦ Set: code, % or flat amount, expiration date, usage limit.

• Promo applied before taxes.

6. Tax Management

• Use Stripe Tax:

◦ Enable for consulting services.

◦ Auto-detect location from billing info.

◦ Include tax on:

▪ Consultant fee

▪ Platform fee (optional depending on structure).

• Displayed clearly during checkout.

• Remittance: Enable Stripe’s automatic tax filing or export via dashboard for manual
remittance.

7. Email Notifications (Dynamic)

Clients receive:

• Payment confirmation

• Project delivery confirmation

• Dispute acknowledgment

Consultants receive:

• Payout confirmation

• Dispute raised alert

Admins receive:

• Dispute raised

• Payment issue (e.g., failed webhook, refund needed)

Dynamic Email Content:

• Project ID & name

• Amount paid/held

• Dates

• Dispute reason (if applicable)

• Status updates

Can be built using:

• SendGrid

• MailerSend

• SMTP from backend

8. Admin Dashboard Features

• Create/Edit/Delete Promo Codes.

• View:

◦ Payment logs

◦ Platform fee breakdowns

◦ Consultant payouts

◦ Tax data (pull via Stripe API)

• Manually resolve disputes

• Release or hold payments

• View project + payment timelines

 Stripe Webhooks to Configure

Webhook Event Purpose

payment_intent.succeeded Payment successful
payment_intent.payment_faile
d

Payment failed

transfer.paid Consultant received payout

charge.dispute.created Dispute raised

charge.dispute.closed Dispute resolved

checkout.session.completed
Optional, for Stripe Checkout
flows

